Rapeseed Variety Recognition Based on Hyperspectral Feature Fusion

نویسندگان

چکیده

As an important oil crop, rapeseed contributes to the food security of world. In recent years, agronomists have cultivated many new varieties, which has increased human nutritional needs. Variety recognition is great importance for yield improvement and quality breeding. view low efficiency damage traditional methods, in this paper, we develop a noninvasive model varieties based on hyperspectral feature fusion. Three types image features, namely, multifractal feature, color characteristics, trilateral parameters, are fused together identify 11 species. An optimal selected using simple rule, then three kinds features fused. The support vector machine kernel method employed as classifier. average rate reaches 96.35% 93.71% distinguishing two species species, respectively. abundance test demonstrates that our possesses robustness. high almost independent number modeling samples classifiers. This result can provide some practical experience guidance rapid varieties.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Generic Object Recognition based on Feature fusion in robot perception

A new generic object recognition (GOR) method for robot perception is proposed in this paper, based on multi-feature fusion of two-dimensional (2D) and 3D scale invariant feature transform descriptors drawn from 2D images and 3D point clouds. The trained support vector machine is utilized to construct multi-category classifiers that recognize the objects. According to our results, this new GOR ...

متن کامل

Finger-Vein Recognition Based on Fusion of Pixel Level Feature and Super-Pixel Level Feature

Finger-vein is a promising biometric technique for the identity authentication. However, the finger displacement or the illumination variation in image capturing may cause bad recognition performance. To overcome these limitations, multi-biometric system, an effective method to improve the performance, is proposed. In this paper, a new multimodal biometric system based on pixel level feature an...

متن کامل

Feature Extraction and Fusion Techniques for Patch-Based Face Recognition

Face recognition is one of the most addressed pattern recognition problems in recent studies due to its importance in security applications and human computer interfaces. After decades of research in the face recognition problem, feasible technologies are becoming available. However, there is still room for improvement for challenging cases. As such, face recognition problem still attracts rese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Agronomy

سال: 2022

ISSN: ['2156-3276', '0065-4663']

DOI: https://doi.org/10.3390/agronomy12102350